
Abstract—This paper presents an application domain driven
approach to the design of embedded systems on silicon, and it
shows how this approach is used to design a chip for a multi-
window TV application. We discuss all major design steps in a
logical order starting with an application domain analysis.
This lead to the choice of Kahn data flow graphs as the pro-
gramming paradigm for high-throughput signal applications.
Based on this analysis we designed a multi-processor architec-
ture which uses run-time reconfiguration. Finally attention is
spent towards the physical implementation and the deep sub-
micron problems we had to solve. The result is a chip that can
manage up to 25 internal real-time video streams. The chip
combines the flexibility of a programmable solution with the
cost effectiveness of a consumer product.

I. INTRODUCTION

The design of embedded VLSI systems poses many chal-
lenges in areas such as design complexity, low power vs.
high speed, and hardware / software codesign. Given the
advances in process technology, it will be increasingly dif-
ficult to utilize the intrinsic compute power of silicon by
means of a monolithic, single, processor architecture. The
reason is that the number and speed of functional units in a
VLSI system are not dominant for the performance any-
more. The main issue is to keep as many functional units
busy as possible, which can only be achieved when true
task level parallelism is exploited in a multi-processor ar-
chitecture, next to the instruction level parallelism inside
one processor. Such a multi-processor will also help to
overcome one of the major future bottlenecks with respect
to the performance of ICs, that is, the power consumption.
By processing as much as possible in parallel, the clock
frequencies and the VDD, and therefore the power con-
sumption, can be kept at acceptable levels. All this leads to
a focus shift from computational aspects of an architecture
(e.g., the pipelining of functional units) to the communica-
tion aspects of an architecture (e.g., the interconnection
network and synchronization between processors).

Next to the on-chip communication issues, the bandwidth to
off-chip memory is more and more a limiting factor for the

M.T.J. Strik, A.H. Timmer and G.J. van Rootselaar are with
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA
Eindhoven, the Netherlands.
J.L. van Meerbergen is with Philips Research Laboratories,
in Eindhoven and with the Eindhoven University of Tech-
nology, the Netherlands.

performance of embedded systems as well. New memory
types, like DDR SDRAM or Rambus memories, are not
sufficient to handle the pace in which the bandwidth needs
increase. It becomes especially critical when CPUs, periph-
erals and other (co-)processors must use the same back-
ground memory in a unified memory architecture (UMA).
In media systems for instance, signal processing applica-
tions, like MPEG video decoding, display processing, etc.,
must obtain a - more or less - guaranteed bandwidth, while
the CPU and possibly some peripherals require low latency
for the best performance. The interface and arbitration to
background memory is therefore of growing importance.

Despite the popularity of state-of-the-art general purpose
CPUs, low cost and low power remain the dominant issues
for the architectural trade-offs of embedded systems. For
media applications, classical programmable solutions fail
because of performance and a too low intrinsic computa-
tional efficiency (ICE) [1]. If we take a video stream with a
16 MHz pixel rate and a minimum of 50 operations per
pixel, then we need at least 800 MOPS/stream. This would
require about one CPU to perform just one function on one
stream. This is not a cost-effective solution for consumer
equipment for two reasons. First the ICE can be improved
by two orders of magnitude by more application specific
implementations for the majority of the functions, and espe-
cially for the ‘number crunching’ parts of video applica-
tions. Those parts often don’t require that much program-
mability and can therefore be implemented in a more dedi-
cated fashion, in contrast to the higher control layers of
video applications. Secondly, normal software stacks use
coarse grain synchronization, in the video domain typically
fields or frames, which leads to an explosion of the off-chip
memory bandwidth costs.

Nevertheless, the software contents and flexibility of em-
bedded systems are increasing, but the area costs and power
consumption must be kept limited. This calls for a platform
approach, in which a multitude of cores (CPUs, DSPs, and
coprocessors) can be easily integrated into one system.
With such a heterogeneous approach, the cost and power
efficiency of DSPs and coprocessors can be combined with
the flexibility of general purpose CPUs, in order to obtain
the best solution and trade-offs with respect to software
programmability, flexibility, silicon area, and power con-
sumption.

In this paper, we introduce a new solution for the concur-
rent processing of many real-time multi-media (video)

Heterogeneous Multi-Processor for the Mana-
gement of Real-Time Video & Graphics Streams

Marino T.J. Strik, Adwin H. Timmer, Jef L. van Meerbergen and Gert-Jan van Rootselaar

streams, that addresses the most important issues of future
embedded media systems. The presented heterogeneous
multi-processor architecture is built around new on-chip
communication and synchronization concepts that enable:
1. True task level parallelism.
2. Optimal use of the bandwidth to background memory.
3. Sufficient programmability at lowest costs.

Our solution can be seen as a subsystem within an overall
architecture, see Figure 1. In this overall architecture, a dis-
tinction is made between a typical Control Processing Sub-
system CPS (e.g., host processor applications and event
driven functionality), a Signal Processing Subsystem SPS,
and a Memory Subsystem MS. In this paper we concentrate
on the SPS subsystem.

peripherals
CPU peripherals

B
C

U

co-
proc

co-
proc DMA

M
M

I

DRAM

MS

CPS

SPS

Video_in Video_out

Figure 1: overall system partitioning

In our first VLSI implementation, the IC has three inde-
pendent and uncorrelated video input channels and two in-
dependent and uncorrelated video output channels. They are
stored in and retrieved from an external SDRAM to be dis-
played on a TV set using PC-like multiple windows.
Graphics data generated by an external CPU are read from
SDRAM to be blended with the composition of the video.
This way new functions like internet access, electronic pro-
gram guides, e-commerce are added to the classical TV
functions, while maintaining a high-end display quality and
a simple user interface. Internally, the chip can exchange up
to 25 video streams of 16 MHz pixel rate or more between
the different processors in parallel. A dedicated stream-
based DMA unit supports 20 streams going from and to an
external SDRAM.

The main challenges for this design can be summarized as
follows:
1. The chip supports multiple video windows with vari-

able sizes. Sizing can easily be done incrementally at
run-time without visual artifacts. Common TV archi-
tectures are not flexible enough to handle such func-
tionality, while in common PC architectures there is no
way that the absence of visual artifacts can be enforced
in a setting with live video in multiple, dynamically
changing, windows.

2. The chip delivers unprecedented video enhancement
quality with functions such as high quality scaling, dy-
namic noise reduction, peaking, CTI, and so on.

3. It allows for on-chip communication between multiple
processors, alleviating from the bandwidth bottleneck
to background memory.

4. Management of up to 25 internal video streams with
hard real-time constraints.

5. Optimal utilization of the bandwidth to background
memory by means of special DMA and arbitration
schemes.

6. Unique combination of flexibility and efficiency of the
implementation. Basic video processing kernels are
identified and implemented in an efficient way. These
kernels can subsequently be combined at the top (ap-
plication) level in many different ways to implement
different applications.

Because of the separation in the overall architecture be-
tween control and signal processing, we can use a tailored
programming paradigm for the signal processing subsys-
tem, see Section II. The new system concepts explained in
Section III exploit the characteristics of that programming
paradigm extensively. Of course, the design of the proces-
sor cores and the complete IC must fit the system concepts,
which is the topic of Section IV. In Section V, we describe
the chip metrics of a first IC realization.

II. PROGRAMMING PARADIGM

The classical (embedded) software paradigm is based on a
sequential description of one or more tasks (threads). Those
tasks synchronize for instance by means of interrupts or
semaphores. The different tasks can be scheduled at run
time by an operating system or real-time kernel. In most
cases, that scheduling is based on fixed priority scheduling,
where the priorities are determined by a rate monotonic
analysis [3].

For a number of reasons, the classical software paradigm
depicted above is not valid for high-throughput, high-
performance signal processing applications, that have to be
mapped onto a multi-processor architecture with on-chip
data communication between processors.
• Signal processing applications are characterized by,

more or less, periodic input and output streams of sam-
ples. Host applications and control-dominated applica-
tions on the other hand are characterized by their con-
trol constructs and possible event driven nature. For in-
stance, branch prediction is an issue in such applica-
tions, while it is not much of an issue in signal proc-
essing applications.

• Because signal processing applications work on large
sets of samples, the notion of reconfigurable computing
is apparent. For instance, if video samples are commu-
nicated between two tasks, such a ‘channel’ will exist
for at least one field period, and in practice much
longer. Such characteristics of the application domain
can be used, for instance in the bus arbitration.

• Fixed priority scheduling used in normal real-time ker-
nels assume that the tasks to be scheduled are inde-
pendent, meaning that the schedule and completion
time of one task does not depend on the schedule and
completion time of another task. However, if video
tasks have to communicate large amounts of data on-
chip to alleviate the bandwidth bottleneck to off-chip
memory, then the tasks can not be treated as being in-
dependent anymore. Therefore, other scheduling meth-
ods have to be used, and we will show that a self-
scheduling approach can be applied for such signal
processing tasks.

For the reasons mentioned above, we choose to use a differ-
ent programming paradigm for the signal processing part of
an embedded system, in contrast to the normal approaches
for general purpose architectures. In our case, we model
signal processing applications as Kahn dynamic data flow
graphs [2], consisting of tasks interconnected by logical
FIFO channels, see Figure 2. For the control processing part
of the system we use standard approaches.

Figure 2 shows an example of an application that is mod-
eled using Kahn data flow graphs. The nodes in the graph
represent basic video functions. The set of functions is lim-
ited and characteristic for the application domain. It in-
cludes noise reduction, vertical and horizontal sampling rate
conversion, sharpness enhancement, video juggling, graph-
ics blending, and so on. Different applications are repre-
sented by different graphs. The fact that we are dealing with
well-defined kernels, which have to be connected in a flexi-
ble way, calls for reconfigurable computing. The switching
between applications must be done on a field by field basis
without artifacts visible on a TV set. Therefore the recon-
figuration must be done dynamically at run time.

Since the bandwidth to external memory is the major design
constraint, it makes sense to distinguish two different situa-
tions when implementing FIFO channels of the Kahn graph.
Some channels can be implemented using on-chip commu-
nication while in other situations the involvement of exter-
nal memory can not be avoided. This is, for example, the
case when two video streams, which are not synchronized,
are mixed. The places where we have to ’cut’ the graph and
make connections to external memory are indicated in the
next Figure 3 for the example that we are using.

Summarizing, we make a distinction between the following
levels of hierarchy:
1. Application graph: a Kahn graph that represents a

complete mode setting, for example for a TV.
2. A subgraph: a set of closely coupled tasks, which inter-

nally can communicate via on-chip means. Communi-
cation between two different subgraphs takes place via
external memory.

3. A task represented by one node in the Kahn graph.

In what follows we will step by step develop the architec-
ture. We start by discussing the on-chip communication.

Video
In1

NR HSRC VSRC

mix 100Hz Peak Matrix
Video

In2
NR HSRC VSRC

Txt
gen

mem HSRC VSRC

mix

mem

mem

Figure 2: Kahn process network

Video
In1

NR HSRC VSRC

mix 100Hz Peak Matrix
Video

In2
NR HSRC VSRC

Txt
gen

mem HSRC VSRC

mix

mem

mem

Figure 3: Connections to background memory

III. SYSTEM CONCEPTS AND ARCHITECTURE

A. Component & communication based design

Since the set of video processing functions is limited and
known in advance we decided to develop for each function
a separate processor which is optimized for the particular
task. To allow the mapping of different application graphs a
reconfigurable network [9][10] is added to the architecture,
see Figure 4. The network is programmable so that different
application graphs can be executed.

An important architecting principle we applied is the sepa-
ration of concerns, in our case the separation between com-
putation and communication. By inserting local buffers at
each input and output of the processor, it is possible to de-
couple the calculation of new data from the transport of it.
Second, the choice for FIFO buffers is motivated. They
have been adopted because the edges in the Kahn graph
represent (video) signals, i.e. measurable physical quantities
sampled at discrete points in time and binary encoded. The
only identification of the different samples in the stream is
given by the order of the samples. Samples are produced
only once and cannot be lost on the communication chan-
nels. For streams with the aforementioned features, separa-
tion of communication and processing can be done with
FIFOs. Third, the architecture is based on a blocking proto-
col, i.e. processors are stopped when at least one of the in-
put FIFOs is empty or at least one of the output FIFOs is
full. The reasons are as follows:

• It allows for an efficient implementation since the
buffer sizes can be kept small. In the current design the
size is equal to 32 pixels.

• The field blanking, that is, the nonactive part of a
video signal, can be used for soft real-time tasks. The
detection whether a stream is in the blanking or not is a
run-time decision, since input streams are not synchro-
nous with respect to each other. This reuse for soft real-
time tasks is easily implemented with a dynamic stream
based model.

• A streambased computing model is often simpler to
implement in comparison with a static synchronous
system, because it can perform runtime (self-) sched-
uling based on local availability of data.

• The concept is better scalable with respect to the addi-
tion or removal of processors. It is expected that proc-
essors will become increasingly dynamic. A good ex-
ample is a variablelength decoder VLD, which pro-
duces and consumes a datadependent number of to-
kens.

Next to the communication aspects described above, we
have to solve the synchronization issues. Again we had to
choose a solution which is totally different from current
systems where the CPU synchronizes the different proces-
sors via an interrupt mechanism. Because of the high
throughput rates and the small grain size for on-chip com-
munication, we have to go for a hardware-oriented ap-
proach. The problem is that the FIFOs at the output of the
sending processor must be blocked when an input FIFO of a
receiving processor is full. This is done by implementing a
synchronization network, see Figure 4. Inputs to this net-
work are the full flags of the input FIFOs of the receiving
processors. Outputs of the synchronization network are
send to the output FIFOs of the sending processors. Via the
correct programming of the network the correct FIFO status
can be passed on. This connection is always the inverse
connection of the communication network: inputs and out-
puts are interchanged. This way we can synchronize at a
very fine grain size, that is, at the level of individual pixels.

Communication network

Synchronization network

P_1 P_2 P_n

FIFOs

...

FIFOs

Figure 4: Communication infrastructure

B. Processor model

The same function (e.g., horizontal samplingrate conver-
sion, HS) can appear more than once in a Kahn graph. For
cost reasons, the different instances of the same function
will all be executed as different tasks on the same proces-
sor. This leads to the processor model [10] shown in Figure
5. This figure shows an example with two input ports and
two output ports. This could, for example, be a temporal
noise reduction coprocessor that needs an input video signal
and the filtered result from the temporal loop as inputs and
has a video output and a backward channel to memory as
outputs.

In our first IC realization, a processor can execute maxi-
mally four different task instances. Each input and output
port is connected to a maximum of four (logical) FIFOs,
labeled 14. In a similar way the state memory is duplicated
four times. In this way we can relate independent FIFOs
and state memories to each task that is executed on the
processor. By not sharing the state memories we can have
task switches on a clock cycle basis. It is thus possible in
our approach to perform very fast task switching without
the need for context saves. In the field of high-throughput
signal processing, context saves are very expensive, as a
huge amount of task state can be involved.

Shared
logic

S
ta

te
_2

S
ta

te
_4

S
ta

te
_1

S
ta

te
_3

fi
fo

_4
fi

fo
_4

Processor

local
clock

generator

fi
fo

_1

fi
fo

_2

fi
fo

_3

fi
fo

_4

fi
fo

_1

fi
fo

_2

fi
fo

_3

Fifo_empty flags

clocks

fi
fo

_1

fi
fo

_2

fi
fo

_3

fi
fo

_4

fi
fo

_1

fi
fo

_2

fi
fo

_3
Fifo_full flags

Control
bus

interface

Local
scheduler

Parameter
sets

Figure 5: Processor model and surrounding shell

The processor is surrounded by a shell as shown in Figure
5. The shell is a generic interface between the processor and
the communication network. It performs several functions.
An important task is to stop the processor when an input
FIFO is empty or an output FIFO is full. This is imple-
mented by manipulating the clock in the "local clock gen-
erator". The details of the implementation are discussed
later. Another task of the shell is to provide the interface
towards a control bus. Via this interface parameters or in-
structions can be loaded which control the mode settings for
the different tasks that are executed on the processor. The
storage of these parameter sets is done by the shell.

C. Communication network

The task of the communication network is to provide suffi-
cient bandwidth for the on-chip data streams between the

output and the input FIFOs of the processors. Different ap-
plication graphs can be executed because the connections in
the network are programmable. For every connection in the
application graph, a path is created in the connection net-
work using circuit switching.

The network is a so-called TST network with space and
time switches, see Figure 6. The reason to build such a net-
work is to guarantee nonblocking connections between
output FIFOs of processors and input FIFOs of succeeding
processors, with a predetermined amount of bandwidth for
each connection. At the input, a multiplexer is added and at
the output a demultiplexer is added. Using four time slots,
the total bandwidth equals the sum of bandwidths of the
individual channels. In the example of Figure 6, two paths
through the network are indicated.

Each path is controlled by the communication controller,
which is basically the equivalent of a bus control unit
(BCU) in a single bus architecture. This controller is re-
sponsible for the lowest level of control, i.e. the control of
the steady state situation within one and the same video
field. It basically consists of a control memory with four
different phases, which are activated cyclically. The number
of four is related to maximal number of time slots in the
communication network. The TST network is programmed
by putting the correct code for the three different parts of
the network in one or more phases, see Figure 6. For exam-
ple, the x connection is programmed in phase 1 via the cor-
rect code at the positions labeled with an x. This way,
bandwidth is allocated corresponding to one phase. The
connection labeled y has twice the bandwidth of one chan-
nel, because it is programmed during two phases.

x x x
y
y

y
y

y
y

time space time

phase
Communication

controller

1
2
3
4

outputs
from

processors

inputs
to

processors

x

Configuration
controller

y

Appl. Graph 1

Appl. Graph 2

Configuration
memories

Figure 6: Communication network

At the next level of control we have designed the configu-
ration controller, see Figure 6. An essential element of this
controller is the configuration memory, a memory that con-
tains all information related to all communication channels
of a complete application. This information is needed by the
communication controller to set up a communication chan-
nel. This means that the correct information is written into
the phase table of the communication controller. This can
be interpreted as activating a communication. The phase
table of the communication controller contains all channels
that are activated at that moment. Note that the information

in the configuration memory can be calculated at compile
time, as the maximum bandwidth needs are known for all
channels in an application graph, see [6].

We have included not one but two configuration memories.
The reason is the following. Since we have to process two
or more video streams that are not synchronized, it is im-
possible to define some point in time at which we can
switch the whole application at once, since the field blank-
ings may never coincide. This means that part of the appli-
cation is still processing according to the previous settings
while some other part is already executing a new applica-
tion. A gradual and run-time controlled transition of the
activity between the two application graphs is necessary.
This is only possible using two configuration memories. In
this way, we can have dynamically changing applications
without visual artifacts in a display.

D. Background memory arbitration and stream caching

In the previous sections, we only discussed on-chip com-
munication & synchronization concepts. Of course, the ac-
cesses to off-chip memory are very important for the overall
performance of a system. As is shown in Figure 7, a dis-
tinction can be made between random requests (in bursts) to
background memory from CPUs and peripherals, and more
periodic requests originating from signal processing appli-
cations. While a CPU or peripheral needs low latency for
the best performance, signal processing / media applications
need guaranteed bandwidth. The reason that signal proc-
essing applications do not need low latency is that they ac-
cess background in a very regular, predetermined, manner,
such that prefetching can be done optimally.

arb.

P P R
R

arbitration

R
P

P

P

CPU / peripherals

signal
processing

P = periodic request
R = random request

Figure 7: Background memory arbitration

To accommodate both types of requests, we implemented
the arbitration scheme from [7]. In that scheme, a service
cycle of N clock cycles is defined, in which M clock cycles
are reserved for periodic requests. As long as enough cycles
are available for the periodic requests, the random requests
have highest priority. If there are just sufficient cycles left
for the periodic requests, they are granted highest priority,
instead of the random requests. In a well-balanced, non-
saturated system, this scheme will give the highest possible
performance, by keeping the average latency for the random
requests as small as possible. In a saturated system (e.g., in
a system in which the CPU is requesting too much band-
width), any arbitration scheme will give the same average

latency. In that case this arbitration scheme is suboptimal,
as the variance of the latency can be quite high.
With the background memory arbitration discussed above,
the amount of on-chip buffering required for each stream
from and to background memory can be quite high. The
reason is that random requests are allowed to monopolize
the background memory for many clock cycles, if the num-
ber of clock cycles N in one service cycle is large enough.
In [8] it is shown, that from an area and flexibility point of
view, it is far more advantageous to have one central buffer
pool between the processors and background memory, in-
stead of local buffers at each processor.

In our IC realization, this central buffer pool is imple-
mented as a kind of stream cache, in which 20 streams from
and to background memory can be accommodated. Because
one has to program the amount of buffering for each stream,
and one can program the prefetching strategy, this stream
cache can also be regarded as a kind of DMA engine.

IV. DESIGN AND PHYSICAL IMPLEMENTATION

A. Local clock generator

In Figure 5 the important role of the local clock generator
was already discussed. In this section we will discuss the
details of the implementation, see Figure 8. The basic idea
is that tasks can be stopped by gating the clock. A running
clock means that the corresponding tasks is active and that
it is not blocked. The selection of the active task is done by
the scheduler and the blocking information depends on the
status of the FIFOs. Therefore, the scheduler and the FIFO
flags are inputs for the local clock generator. The outputs
are the different clocks and the select signal. The different
clocks control the state update of each tasks separately. The
select signal controls the multiplexer at the input of the
logic.

As synchronization with the rest of the system is performed
inside the shell, the processor is a pure stream processing
implementation. Therefore, high-level synthesis tools like
Phideo [5] can be used to design the processor. The shell
adapts the periodic model of Phideo to the rest of the sys-
tem which is much more dynamic.

Shared
logic

Sta
te_
2

Sta
te_
4

Sta
te_
1

Sta
te_
3

Clock_1
Clock_2
Clock_3
Clock_4

select

Fifo_empty flags

Fifo_full flags

Local
scheduler

Ref clock
16 MHz

Figure 8: Local clock generation

The clock gating helps to reduce the power dissipation.
Power dissipation is important for consumer products be-
cause heat sinks or fans must be avoided, and limited power
dissipation allows to use a cheap package. Clock gating is
also used to provide hardware breakpoints and single-step
debug capabilities.

B. Clock distribution

In order to deal with deep submicron effects and routing
delays the chip layout is organized in a hierarchical way
using 9 layout blocks and 30 different clock domains. At
the top level there is a relatively slow clock of 16 MHz
which is used for synchronization between the different
clock domains. Within each domain local clocks of higher
frequencies up to 96 MHz are used.

The clock circuitry in each layout block is built around a
PLL, see Figure 9. The PLL compensates for the insertion
delay due to the clock trees and the divider and gating logic.
The PLL matches the phase of the output of the clock tree
with the 16 MHz clock reference. The clock tree output is
provided with a continuous running dummy clock tree also
running at 16MHz, as a PLL requires a closed control loop.
The different clock trees originating from the same PLL
must be matched according to timing constraints of com-
munications paths between the domains. In our case we
chose to match the different clock trees in order to avoid
additional components at clock boundaries.

PLL/OSC
16 MHz
Ref

192 MHz

16/32/48
64/96 MHz

16MHz

Clock
Divider

Clock

(In total 9x PPL/OSC, 30 internal clock domains)

halt

single-step test clock
enable test clock

Figure 9: Clock distribution per layout block

C. Debug

With the increased complexity of systems on silicon debug
becomes more and more important. Today it is key to the
success of the product. The goal of debug is to find out why
the chip does not work in its application environment, in
our case a set-top box or a television set. This analysis must
be done as fast as possible, so that the system, software, or
chip can be redesigned quickly. This way the time from the
manufacturing of the first samples (‘first silicon’) to a fully
functional system incorporating the IC can be improved.

The chip can malfunction in its application for a variety of
reasons: the board may contain errors or the chip itself may
be buggy. The chip may fail for various reasons related to
the software as well as to the hardware. The software can
contain bugs or the hardware can have design errors such as

logic errors or timing errors that may have slipped through
pre-silicon verification. Another possibility is that samples
may have manufacturing errors that were not found using
the stuck-at and IDDQ tests.

In the debug approach, two components are used: on-chip
Design-for-Debug hardware (DFD), and debugger tool
software that executes on a workstation. The DFD is added
at design-time. The debugger software communicates with
the DFD via a serial interface as shown in Figure 10.
Simulator-like features are offered with the real silicon; all
flip-flops and embedded RAMs can be accessed as in a
Verilog simulation. Wavetraces of internal signals can be
displayed as shown in the figure. Breakpoints can be set to
stop the chip at appropriate points in time.

Figure 10: Debug setup

The following types of DFD were added to the chip:

• A serial interface (JTAG / IEEE 1149.1 Test Access
Port).

• Multiplexers that connect all scan chains to the serial
interface.

• A clock controller with halt, single step, and ‘enable
test clock’ features.

• Breakpoint controllers that can be programmed to halt
the clock controller upon detecting certain event com-
binations.

The JTAG port provides a 5-pin serial interface to the chip.
All debug features have been made accessible via the JTAG
port.

In order to provide access to all the flip-flops on the chip,
the scan chains are reused. For manufacturing test, the scan
chains are multiplexed over the functional pins to allow
parallel access to multiple scan chains on the chip. For de-
bugging, however, the ability to access all the flip-flops
while the IC operates in the application outweighs the speed
requirement. For this reason, all the flip-flops of the chip
have been made accessible (on a per clock domain basis),
through the JTAG port.

Scan chain access only works if the functional clock is
halted. For this reason, the local clock generator described
in Section B has halt and enable-test clock pins.

After scanning out the required clock domains, and scan-
ning in the original state again, functional clock cycles can
be issued using the single-step pin on the clock controller.
The single-step pin is activated using commands that are
issued via the JTAG port. The halt pin is activated by the
breakpoint controller.

In order to stop the chip at a reproducible point in time, on-
chip clock cycle counters or breakpoint controllers are re-
quired. For simple applications, stopping the chip n cycles
after the reset is sufficient to allow debugging.

For complex applications with data dependent processing
times, it is often impractical or impossible to calculate up
front at what clock cycle a given event will occur. Simi-
larly, it impossible to predict the behavior of a system if the
timing of its input signals is not deterministic. To facilitate
debugging, breakpoint controllers are added that monitor
signals that give meaningful information about the progress
of computations. Thus, not only clock cycles are counted,
but also e.g. the occurrence of addresses on the control bus
and switch matrix packet positions can be monitored.

The debug hardware has been successfully used to read
internal RAMs, create bus traces, and monitor flip-flops in
processing units.

D. Design flow

A major factor to be able to design a system on a chip with
a limited number of people in a limited time is a working
design flow. Design entry is performed at RTL level and at
behavioral level. An in house behavioral synthesis tool [5]
specialized in stream processing functions is used for the
video scaling and enhancement functions. The behavioral
synthesis tool produces RTL code, by deriving a data path
and schedule. It also performs memory assignment for in-
termediate data values. All RTL code can then be synthe-
sized with logic synthesis tools.

These designs are created starting from the function and can
be considered bottom up. Simultaneously a top-level floor
plan is created. Interconnectivity and IC infrastructure
(clock, power, reset, production test, and debug) are de-
signed to build a system from the different independent
functions.

Functional verification is done first at processor level. All
modes are tested with self-checking test benches. Simula-
tions are bundled in a regression system as soon as they run
without errors. At system level several complete system
simulations must be created. They will test the processor
interconnectivity and infrastructure. Most of the problems
are related to incomplete or incorrect specification and to
timing which was not covered at block level using a test
bench. A simulation for production test patterns is set up, to

prototype chip (Device
under Debug)

application board

video signal source display
serial connection

computer
executing
debugger
software

wave traces generated by
debugger software

test this part of the design and to prove that the production
test hardware performs correctly. Finally the memories are
verified either via a build in self-test circuit or via scan
chain access.

At layout level the blocks can be created in parallel. A
number of steps are done based on placement information.
These include, scan chain reordering to reduce the wire
length used by scan chains, in place optimization to match
buffering with actual wire load, buffer tree synthesis for
nets with a high fanout. The clock net, which is one of the
nets with a high fanout, also requires matching of the dif-
ferent delay paths from root to leaves. As the utilization is
usually smaller than 90%, the empty locations can be filled
with decoupling capacitor cells. They will reduce ground
bounce and voltage loss in resistive power supply lines (IR-
drop) in the design. Finally routing will finish the creation
of a block. A layout versus schematic comparison is capa-
ble of proving that the layout is equivalent with the desired
circuit. Extraction tools are capable of estimating the para-
sitics from the design layout. With these accurate timing
analysis can be done for the extreme process cases. Under
best case conditions all paths are checked for hold times.
Under worst case conditions all path are checked for setup
times. The next paragraph will discuss the very important
aspect of timing closure in more detail.

Figure 11: IR-drop

The top-level assembles and interconnects all layout blocks.
One important aspect to verify is the power distribution.
Estimated power dissipation information can be used to
assign power consumption to particular parts of the design.
An extracted resistor model of the power grid is used to
perform a static qualitative analysis on the power grid. IR-
drop results produced with this type of verification are
shown in Figure 11.

It can be seen that the spot with the largest voltage drop is
not perfectly in the middle of the chip. With the power
routing in rings around blocks this would be the ideal situa-

tion. Therefore the power grid was adjusted such that the
absolute value of the voltage drop was lowered and the
largest voltage drop is shifted to the chip center.

E. Timing closure

Static timing analysis has an important role in the current
synchronous ASIC design flow. There are a number of is-
sues that have a large impact on the ability to prove that a
design will work at speed. With designs getting bigger a
hierarchical approach for static timing analysis is required.
This means that one can verify the internals of a block prior
to having the complete design information. However, for an
accurate result the environment of the block must be ac-
counted for (load of outputs, slope and arrival time at the
inputs). It must be possible as well to create a timing model
for every block in order to perform a check at the higher
level. This has an impact on hierarchy decisions. One re-
quirement is for example the presence of all clocks which
relate to I/O as pins on the boundary of a block, in order to
be able to create a timing model. As a result the clock dis-
tribution, gating and division logic should be at the highest
hierarchy level.

V. CHIP METRICS

The table below provides measured metrics of working sili-
con for the multi synchronous system on a chip described in
this paper. In total 15 autonomous dedicated processors
work in parallel. The 15 functional entities are regrouped
into 9 layout entities for which the backend trajectory is
completed and which are combined at the chip toplevel.

Technology 0.35 µm
Clock frequency Noise reduction = 16 MHz

Sharpness enhancement = 32 MHz
Horizontal zoom = 64 MHz
Vertical zoom = 64 MHz
Memory interface
CPU interface = 48 MHz
30 internal clock domains

Power supply 3.3 Volt, 5 Watt
Transistor count 7.6 Million
Package 352 SBGA
Processing power > 10 GOPS
Testability Full scan, 15x macro test
Debug Full internal state access via JTAG

Hardware breakpoints
Die size 13 mm x 13 mm

Table 1: Chip metrics

Figure 12: Photo of the chip

VI. CONCLUSIONS

We have discussed the cost-effective design of silicon for
challenging multi-window TV applications. In contrast to
PC windows, sizing can be done incrementally at run-time
without artefacts. The chip is capable of managing up to 25
internal video streams with hard real-time constraints.

We have covered all relevant aspects ranging from the ap-
plication domain analysis, the programming paradigm, the
architecture and the physical implementation.

The application domain analysis resulted in the definition of
a limited set of high level functions which have to be com-
bined in different flowgraphs that represent different appli-
cations. As a consequence we have adopted Kahn data flow
graphs as our programming paradigm.

To design the architecture we decided to use a platform
based approach in which computation is separated from
communication. The computation takes place in autono-
mously operating processors, each optimised for particular
types of functions. The interfaces to the processor are stan-
dardised by defining processor shells.

The communication is implemented as a reconfigurable
connection network. Use is made of circuit switching and a
TST approach. Two configurations are stored to allow run-
time dynamic re-configuration. Worst case processing per-
formance is guaranteed. Self-scheduling data driven proc-
essing eliminates need for a cycle accurate compile time
schedule. All this is necessary to avoid display artefacts.

Finally we discussed the physical implementation in silicon.
It was shown that the application driven design style using
high-level and RT-level synthesis leads to a set of chal-
lenges. More specifically, clock gating, clock distribution,

debug, verification and timing closure are discussed in de-
tail. The design shows that different clock domains up to 96
MHz in a 0.35 µm process are possible using synthesis on a
chip of 13 by 13 mm square.

ACKNOWLEDGEMENTS

Many colleagues have contributed to the results presented
in this paper, for which I am more than grateful. I would
like to specially thank the people that have contributed to
the realization of the silicon: Erwin Waterlander, Françoise
Harmsze, Ad Vaassen, Leo Sevat, Marcel Oosterhuis, Harry
van Herten, Egbert Jaspers, Johan Janssen, Gerben Essink,
Jeroen Leijten, Paul Wielage.

REFERENCES

[1] Claasen, T.A.C.M., “High Speed”: Not the Only Way to Exploit
the Intrinsic Computational Power of Silicon”, ISSCC digest of tech-
nical papers, pp. 22-25, 1999.

[2] Lee, E.A. and T.M. Parks, “Dataflow process networks”, Pro-
ceedings of the IEEE, vol. 83, pp. 773--801, 1995.

[3] Liu, C.I. and J.W. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment”, Journal of the ACM,
vol. 20, no. 1, pp. 46-61, 1973.

[4] van Rootselaar, G.J. and B. Vermeulen., “Silicon Debug: Scan
Chains Alone Are Not Enough”, in Proceedings IEEE International
Test Conference, pp. 892-902, 1999.

[5] van Meerbergen, J.L., P. Lippens, W. Verhaegh, and A. van der
Werf, "PHIDEO: High Level Synthesis For High-Throughput Appli-
cations", Journal of VLSI Signal Processing, Vol. 9, no. 1-2, pp. 89-
104, January 1995.

[6] Timmer, A.H., F.J. Harmsze, J.A.J. Leijten, M.T.J. Strik, and J.L.
van Meerbergen, “Guaranteeing On- and Off-chip Communication in
Embedded Systems. Proc. IEEE Computer Society Workshop on
VLSI `99, Orlando (FL, USA), pp. 93-98, 1999.

[7] Hosseini-Khayat, S. and A. Bovopoulos, “A simple and efficient
bus management scheme that supports continuous streams”, ACM
Transactions on Computer Systems, vol. 13, no. 2, pp. 112-140,
1995.

[8] Harmsze, F.J., A.H. Timmer and J.L. van Meerbergen, “Memory
Arbitration and Cache Management in Stream-Based Systems” , Pro-
ceedings of the DATE 2000, Paris (France), pp. 257-262, March
2000.

[9] Leijten, J.A.J., J.L. van Meerbergen, A.H. Timmer, J.A.G. Jess,
“Stream Communication between Real-Time Tasks in a High-
Performance Multiprocessor”, Proceedings of the DATE 1998, Paris
(France), pp. 125-131, March 1998.

[10] Leijten J.A.J., “Real-Time Constrained Reconfigurable Commu-
nication between Embedded Processors”, PhD. Thesis, Eindhoven
University of Technology, November 1998.
http://www.ics.ele.tue.nl/es/papers/sld.shtml

