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Abstract. Only very recently, single-chip MPEG2 video encoders are being reported. They are a
result of additional interest in encoding in consumer products, apart from broadcast encoding, where a
video encoder contains several expensive chips. Only single-chip solutions are cost-e�ective enough to
enable digital recording for the consumer. The professional broadcast encoders are expensive because
they use the full MPEG toolkit to guarantee good image quality, at the lowest possible bit-rate. Some
MPEG tools are costly in hardware and these are therefore not feasible in single-chip solutions. This
results in higher bit-rates, that can be accepted because of the available channel and storage capacity
of the latest consumer storage media, harddisk, digital tape (D-VHS) and Digital Versatile Disk (DVD).
A consumer product is I.McIC, a single-chip MPEG2 video encoder. It operates in ML@SP mode which
can be decoded by all MPEG2 decoders. The IC is highly-integrated, as it contains motion-estimation
and compensation, adaptive temporal noise �ltering and bu�er/bit-rate control. The high-throughput
functions of the MPEG algorithm are mapped onto pipelined dedicated hardware, whereas the remaining
functions are processed by an application-speci�c instruction-set processor. Software for this processor
can be downloaded, in order to suit the IC for di�erent applications and operating conditions. The
IC consists of several communicating processors which were designed using high-level synthesis tools,
PHIDEO and DSP Station

tm.
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1. Introduction

Today, MPEG2 is an important standard for video

compression [1, 2, 3]. Encoding is mainly done

by distributors and publishers using professional

equipment that is yet too expensive for the con-

sumer market [4]. Broadcast encoders typically

use bit-rates ranging from 1.5 to 8 Mbit/s. A

minimal bit-rate for an appreciable image qual-

ity is desired because of the high-cost of channel

rate rented from a channel provider. Therefore,

the performance of the broadcast encoders is more

important than their high prices. Use of the full

coding toolkit, o�ered by the MPEG2 video cod-

ing standard, enables to achieve those goals. Some

paths of the coding algorithm are performed sim-

ultaneously with di�erent parameter settings. Af-

terwards, a founded choice can be made on the bit-

rate/picture-quality performance, and the better

is forwarded. Current hardware technology can-

not e�ciently implement this type of encoding on

a single die. Therefore, professional equipment

uses several dedicated chips and high-processing

power for the encoding function. In addition, large

amounts of high-speed RAM are present in these

systems.

It is a challenge to provide the functional-

ity of MPEG encoding at a reasonable price: a
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Fig. 1. An overview of MPEG's signal path

single-chip solution. An application for a�ordable

MPEG2 video coding is consumer storage. Here,
bandwidth is not as expensive as the broadcaster's
channel rates, storage is performed on bulk media
such as magnetic disc and tape (DVHS), and op-

tical disc (recordable DVD) and bit-rates from 5
to 15 Mbit/s for good picture quality are toler-
able. To achieve good results at these bit-rates,
only some signi�cant tools from the MPEG box

are necessary and a careful selection can be made
as to the bene�t of hardware costs.

A hardware versus software implementation of
the MPEG algorithm is a key question. MPEG
consists on one hand of �xed signal-processing

items that demand a high-throughput and are
best implemented in hardware; on the other hand
there are also 
exible settings for di�erent cod-
ing environments and applications. A balancing

act for hardware versus software solutions has to
be performed. The hardware side enables the
high-throughput factor, the software side enables
a wide range of applications.

The di�erent \unit-blocks of data" within the
MPEG algorithm have a noticeable impact on

the architecture of encoders. At the entry level,
video enters the IC in a pixel format on �eld
basis. The MPEG operations are performed on
data sub-blocks (macro-blocks) selected from the

frames. Finally, MPEG's result are bit-streams.
This means that several types of data-unit are
present in the algorithm at di�erent rates. This
is often a reason to subdivide the algorithm in

several dedicated chips as was done in [5], where
separate ICs are used for motion-estimation, pixel
processing and the core MPEG coding facility. A
solution on a single chip is possible by analyz-

ing inter-processor communication with di�erent

data-rates. Possible solutions are the use of FIFOs
and communication by shared (external) RAMs.
Typical broadcasters will encode clean material,

free from noise and other artefacts. On the other
hand, noisy image sequences can be expected in
a consumer environment. For instance, terrestrial
broadcasts or material from analogue tapes are
often noisy. In that case, a large portion of the
bitstream will be spent to the coding of noise. To
lower the demands for bit-rate and to enhance the
image quality, noise reduction should be part of
an encoder for the consumer market.

A result of these contemplations is I.McIC, a
single-chip MPEG2 video encoder meant for the
consumer market that will be dealt with here. Re-
cently, other single-chip encoders have been repor-
ted, such as Sony's single-chip MPEG2 codec in-
corporating 6 high-power DSPs processing macro-
blocks [6]. Also reported was NEC's low-power
MPEG2 encoder employing an adaptive search on-
chip motion-estimation algorithm [7]. Additional
single-chip solutions are reported by IBM (intra-
only) [8], C-cube and ADI-Apogee [9], but not eas-
ily found in scienti�c literature.
The remainder of this paper is as follows: Sec-

tion 2 discusses MPEG in a nutshell; Section 3
discusses MPEG-compliant derivations that make
cost-e�ective integration possible for consumer
coding; Section 4 discusses the architecture ar-
rived on; Section 5 describes the functionality and
design of the Compressor; Section 6 describes the
use of the PHIDEO tool; Section 7 describes the
ASIP; Section 8 describes the veri�cation and sim-
ulation of the design; Section 9 discusses the char-
acteristics of the resultant IC and reaches the con-
clusions. Acknowledgments follow in Section 10.

2. MPEG coding principles

MPEG2 is an image-sequence compression stand-
ard. Part of the compression is lossy, part is
lossless. An important data-unit within MPEG is
the macroblock, which is a composition of a 16�16
pixels luminance (Y) block and two 8�8 chromin-
ance blocks. This is conform the 4:2:0 data format
which means that the colour information is sub-
sampled in both directions by a factor of two in
relation to the luminance. In most parts of the
MPEG process, this composition is handled as six
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blocks of 8� 8 data values, which are referred to
as \dct-blocks".

First, the dct-blocks are transformed to the
discrete cosine domain by a 2-dimensional DCT.
The resulting coe�cients are practically uncorrel-
ated and can be quantized separately and inde-
pendently with the human visual system in mind.
The quantization strength e�ectively balances the
image-quality versus bit-rate and is also used as
such by the bit-rate/bu�er controller. After this
lossy coding part the blocks pass an entropy-
coding (lossless) part comprising a Zig-Zag scan
(ZZ), a DC predictor, a Run-Length Encoder
(RLE) and a Variable Length Encoder (VLE) that
generates a set of codewords for the underlying
macroblock. In contrast with JPEG, MPEG's
VLE codeword tables are �xed. The macroblock
is decoded by following the described path in re-
verse order. This decoding path consists of inverse
quantization, inverse DCT and inverse compens-
ation. Figure 1, which is redrawn from [3], shows
MPEG's signal path.

Subsequent images of a typical sequence are of-
ten quite equal, therefore the encoding switches
to a di�erential mode where only the di�erence
image is coded following the same path as de-
scribed above. To decrease the di�erence image
even further, motion estimation and compensation
are used. This includes �nding for each macrob-
lock the most matching equivalent from the pre-
vious image and using this as a prediction for the
current block. The remaining di�erence signal is
then coded, accompanied by a displacement vector
describing the relative position of the prediction in
the previous image. The regularly coded image is
referred to as an \Intra" coded (I) image, whereas
the di�erentially coded image is referred to as an
inter-coded or Predicted (P) image. To further
reduce the bit-rate, also Bi-directionally (B) pre-
dicted images are possible in MPEG. Then, the
contents of an image are predicted from previous
and future images. The order of the images is re-
shu�ed in the encoder memory to enable causal
prediction at the decoder site. It may be clear that
this re-shu�ing property demands the availability
of large RAMs in the encoder.

Encoding with I, P, and B frames at max 720�
576 resolution with 30 frames/s, is referred to as
\Main Pro�le At Main Level" (MP@ML) coding.

Encoding with only I and P frames at the same
resolution is called \Simple Pro�le At Main Level"
(SP@ML) coding.

3. MPEG compliant implementation for

I.McIC

The MPEG2 video standard describes how the
bit-stream is decoded to video signals. It does
not dictate the way that the bit-stream was cre-
ated. This has the e�ect that the standard more
or less �xes the decoder but not the encoder. An
MPEG decoder has to be able to decode any valid
bit-stream, whereas an MPEG encoder only has
to produce a valid bit-stream. It doesn't need the
full toolkit of MPEG to arrive at this valid bit-
stream. In e�ect, a minimal system could consist
of a DCT, quantizer and entropy coding, see Fig-
ure 2. One would arrive at a valid MPEG video-
elementary stream by inserting header informa-
tion and performing some (limited) bu�er/bit-rate
control. From this example, it can be seen that,
contrary to popular belief, an MPEG encoder can
be less complex than an MPEG decoder. In ef-
fect, there are single-chip encoders available on
the market that work in this intra-only mode [8].
In order to arrive at an encoder that provides

better image quality than the intra-only encoder
described above at a given bit-rate, a vast set of
tools is available from MPEG's toolbox. Among
the well-known are the use of predictive coding
(P-frames), bidirectional coding (B-frames) and
the bit-rate control mechanism. The use of these
tools has an impact on the architecture and cost of
the encoder. The application area of the encoder
plays a crucial role. I.McIC is primarily meant
for the consumer storage market, where the band-
width is not as expensive as for broadcast encoders
that have to rent (part of) a transmission chan-
nel. Typical bandwidths for consumer storage ap-
plications are 5-15 MBit/s, the higher bandwidth
corresponding with the highest image quality.

One of the costly tools within MPEG is the use
of motion compensation for P or B frames. It is
also a mechanism that is highly desirable for good
performance. For an encoder to use motion com-
pensation, a frame memory and a motion estim-
ation function must be present. Motion estima-
tion can be very expensive, and is often performed
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Fig. 2. A minimal MPEG encoder

on separate chips [6, 8]. A breakthrough however
is the Recursive-Search (RS) block matching al-
gorithm [10]. Unlike the more expensive full-
search blockmatchers that are matching all pos-
sible displacements within a search region, the
RS blockmatcher only investigates a very limited
number of possible displacements. By carefully
choosing the candidate displacements, a high per-
formance can be achieved, approaching true mo-
tion. The algorithm providing the candidates
is based on the 3D recursive search (3DRS) al-
gorithm described in [10]. As only a few matches
have to be made, the associated hardware for mo-
tion estimation remains relatively small. This mo-
tion estimator was proven in an IC for consumer
applications in [11, 12]. It is shown in [4] that, des-
pite the fact that the 3DRS ME does not check all
possible displacements and therefore will not guar-
antee to �nd the best possible �t, the bit-rate for
a given quality is not signi�cantly di�erent from
full-search block-matching.
I.McIC can share a PCB with an MPEG decoder

which demands 16Mbit of DRAM. This RAM can
be multiplexed to the encoder when the decoder is
inactive. The combination of the 3DRS and avail-
able RAM for frame storage gives the opportunity
for predictive coding. The amount of RAM is not
su�cient for bidirectional coding. More DRAM
and an expanded 3DRS motion estimator could
enable B frames. However, from experiments de-
scribed in [4] it shows that the use of P frames in-
deed gives a large coding bene�t, but additional B
frames will only marginally decrease the bit-rate.
For good quality images in the range of 32 to 37
PSNR, the di�erence in bit-rates is in the order of
5{20%. Figure 3 shows the bitcosts per individual
frame of two coding pro�les: IPPPPPPPPPPP
and IBBPBBPBBPBB order on the \
ower iso"
sequence. After adding these frame bitcosts for
a �xed quality the total costs for each pro�le are
found. It appears that at 34 dB PSNR, the loss
in bit-rate is 12%.

It is also shown in [4] that this loss in cod-
ing e�ciency by not using B frames is minim-
ized by the use of a noise-�lter as a preprocessing
step. Noise reduction is done by a recursive
motion-compensated spatio-temporal noise-�lter
[13]. The noise reducer is smartly injected in the
coding loop itself, utilizing the on-chip motion es-
timator.

4. Architecture

The signal path in I.McIC can be roughly par-
titioned into an input, compression, and output
part (see Figure 4). Each of these parts is a
process which communicates with other processes
via bu�ers in a dynamic data-
ow fashion [14].
These bu�ers have a �xed size and consequently
they may neither over
ow nor under
ow. The in-
put process receives a video signal from an inde-
pendently operating video source and, therefore,
dictates the throughput of the complete encoder.
Consequently, the input bu�er must be emptied
faster than it is �lled such that no over
ow can
occur. To prevent under
ow for this bu�er, the
compression processing must be halted now and
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then to have the bu�er �lled. For the output buf-
fer under- and over
ow is circumvented by con-
trolling the number of code words produced. To
this end, for each macroblock a di�erent quantizer
step size can be used which in
uences the com-
pression ratio. Furthermore, a frame bu�er is re-
quired to store the previous frame for inter-coding
of pictures using motion estimation.
The sizes of the input, output, and frame bu�er

are quite large. The input bu�er must be larger
than one �eld since the processing is frame based
and input signals arrive �eld by �eld. The storage
of one �eld of chroma and luminance samples in
a 4:2:0 format requires 2.4 Mbit. Consequently,
the storage of the reference frame requires 4.8
Mbit. The size of the output bu�er is determined
by the MPEG2 speci�cation and equals about 2
Mbit. All these bu�ers are stored in 16 Mbit of
external DRAM, con�gured as 4 devices of 16 bit
words and organized per device in 512 pages of
512 words. The data width is 64 bits and the ad-
dress width is 18 bits (9 for the column and 9 for
the row). I.McIC can be part of a system in which
it time-shares this memory with an MPEG2 de-
coder.
I.McIC's architecture consist of a control and

video processing part. The processing is par-
titioned into three parts, i.e., line-based pro-
cessing (Frontend), macroblock-based processing,
and bitstream-based processing (Backend). These
parts exchange data via a memory interface mod-
ule with the external memory where the large
bu�ers are located. The accesses from the vari-
ous parts of I.McIC to the external memory are
handled by the interface by devoting time slots in
a round-robin fashion. The control part consists of
three parts, i.e., a global controller, an I2C inter-
face, and an Application Speci�c Instruction-Set
Processor (ASIP). Figure 5 shows I.McIC's archi-
tecture.
The Frontend receives a digitized video signal

with Y, U, and V components and separate syn-
chronization signals, and processes them in ordin-
ary line-based fashion. It performs 4:2:2 to 4:2:0
format conversion by vertical �ltering (6 taps with
�xed coe�cients) and subsampling of the U and V
components. Furthermore, it performs horizontal
�ltering (7 taps zero-phase �lter with program-
mable coe�cients) for the Y, U, and V compon-
ents. The horizontal �lter can be used to pre-

process di�cult-to-code video scenes by reducing
unimportant image features that would otherwise
dominate the coding e�ort. Reducing their impact
will result in an overall better image quality. Also,
the pre�lters are used as anti-aliasing �lters when
the input image is subsampled to SIF format for
low bit-rate coding.
The Backend performs byte- and bit-wise pro-

cessing for packing and bit stu�ng, and merges
the variable-length coded DCT coe�cients gener-
ated by the Compressor with the MPEG headers
generated by the ASIP. In addition, the Backend
has features to �ll small remaining coding gaps, by
stu�ng, when a �xed-rate coding scheme is used.
The macroblock-wise processing is performed in

a pipelined fashion by the Compressor and the
ASIP. The ASIP is a microcode-programmable
processor that runs a program for every mac-
roblock. The ASIP's tasks are application spe-
ci�c such as the compression pro�les and bu�er-
regulation algorithm. In contrast, the Compressor
serves as a co-processor performing tasks that are
best implemented in hardware, mostly because
they are �xed MPEG functions such as cosine
transforms.

5. Compressor

The Compressor entails the �xed signal-processing
activities on the macroblock-level. Among those
are motion estimation (ME) and compensation
(MC), frame-�eld conversion (FF), noise �ltering
(NF), discrete cosine transform (DCT/IDCT) and
quantization (Q/IQ). Most of the actions here are
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Fig. 5. Top-level architecture of I.McIC
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mandatory MPEG operations. An encoder cap-
able of inter-frame coding actually contains a de-

coding part next to the obvious coding part (see
Figure 6). It has to mimic the functionality of the

reference MPEG decoder to arrive at the same

reference image. This part of the codec has to be
fully in-spec with the MPEG standard, whereas

the encoding part only has to provide a de-codable

signal at an appreciable quality. The functional-
ity of the lossless part of the encoder, the zigzag

scan (ZZ) and run-length and variable length en-
coding (RLEVLE) part is also exactly prescribed

in the MPEG2 standard. Four blocks within the

Compressor with interesting approaches are the
motion estimator, the DCT, IDCT and the noise-

�lter. These blocks will be described in greater

detail below.

One of the most signi�cant parts of the Com-

pressor is the motion estimator. It matches mac-

RLE & VLE

DC prediction

ZZ

Q

DCT

FF

NF

-MC ME

IQ

IDCT

IFF

+MC

table

code words

current MB previous frame result MB

Fig. 6. Architecture of the Compressor

roblocks from the previous frame, residing in the
main memory to the current macroblock. In order
to minimize the number of accesses to the external
memory, the motion estimator has a cache which
contains pixels of a window in the decoded previ-
ous frame. The window allows for motion vectors
with a vertical range of -6 to +6 pixels and a hori-
zontal range of -8 to +7 pixels per frame. This falls
within MPEG's f mode=1 category. For each mac-
roblock a small number of candidate motion vec-
tors at half-pel accuracy is considered, returning
the vector with the minimum absolute di�erence.
The candidate vectors are generated by the ASIP
according to the 3DRS block-matching algorithm.
The basics of this algorithm are that, due to hard-
ware/bandwidth constraints only a limited num-
ber of candidates can be matched; in our case 5.
As a result of the recursion in the algorithm, only
candidates with a high-possibility of correctness
are generated.
As discussed earlier, in the typical applications

of I.McIC, noisy sequences can be expected as
source material. To this order, an adaptive noise
�lter is employed [15]. The structure of the noise
�lter is shown in Figure 7. For simplicity reasons,
the signals are represented as 1-dimensional data.
Here g(k) is the observed, noisy, signal; f̂MC(k�1)
is the previously �ltered (and coded-decoded) sig-
nal which is retrieved from the main loop memory.
Note that the subscriptMC denotes that this sig-
nal is motion compensated to lie along the motion
trajectory of g(k). The result of the �ltering ac-

tion is f̂(k), this is inserted into the coding chain
instead of the noisy g(k). Within inter-coded mac-

roblocks, the signal f̂(k)�f̂MC(k�1) is forwarded.
The Kalman-gain multiplier 0 � C � 1 is con-

trolled to adapt the �lter to the situation at hand.
Setting C = 1, forwards the (noisy) observation
and no �ltering action takes place. If C = 0,
then only the prediction is forwarded, while for
intermediate values of C noise-�ltering is achieved
[16, 17]. Except from globally controlling this
value, C is also directly controlled by the res-
ult of the motion compensation. This is done
to avoid blurring in situations where MPEG's
(translational-) motion model is insu�cient, such
as in occlusion areas [18] and with extreme dis-
placements out of the scope of the motion caches.
Reversely, the adaptivity also increases �ltering
e�ort if a good motion-compensation is detected.
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The implemented IDCT and DCT are time-

recursive implementations [19, 20] instead of the

often used rotation (or butter
y) algorithms [21].

The recursive algorithm, although more of a chal-

lenge for hardware timing, is easier to control for

accuracy and the accompanying word widths [22].

These structures represent 2nd order recursive di-

gital �lters with �xed coe�cients. The trans-

formed coe�cients are found from the last output

after feeding the input data through the structure

from Figure 8.

The structure contains 2 constants-multipliers

that are e�ectively mapped on the same struc-

ture in VLSI. The value of the constants dictates

the exact coe�cient which is calculated. I.McIC

utilizes a row-column approach for establishing

the 2D (I)DCT of the 8�8 dct block. With the

row-column approach, data-series of 8 values are

fed through the structure. Only 8 of these struc-

tures with �xed coe�cients are then needed to ac-

complish a 2D (I)DCT by time-folding between

(I)DCT across the rows and (I)DCT along the

columns.

DD Cv

Sv
input (0..7) sum (0..7) result (v)

Fig. 8. Recursive (I)DCT stage

6. The use of PHIDEO

The macroblock compressor has been designed us-
ing PHIDEO [23, 24], which is a design method
and tool set for high-throughput applications.
PHIDEO translates a high-level speci�cation of
an algorithm into an architecture consisting of
processing units communicating via distributed
memories, associated address generators, and a
controller. PHIDEO generates an RTL-VHDL de-
scription that can be synthesized using logic syn-
thesis tools.
The input for PHIDEO is speci�ed in PIF

(PHIDEO Input Format), and typically contains
many (nested) loops and multidimensional arrays.
This entry level is an almost identical match with
typical simulation languages such as FORTRAN
or C. Therefore, after an (automatic) translation
of the PIF description into a sequential simula-
tion language, the design can be simulated at
high speed on real image sequences. A sample
of the PIF description of the IDCT from Figure 8
is shown in Figure 9, showing the initialization

and the recursion of the eight 2nd order recursive
structures and the extraction of the �nal result of
the IDCT across eight rows.
There are a number of major steps that have to

be taken in order to get from an algorithmic de-
scription, which only speci�es what functions have
to be executed, towards an architecture, which
speci�es how they are executed. These steps are:
scheduling, memory synthesis, address synthesis,
and controller synthesis.
The main task during scheduling is to determine

for each of the operations in the PIF description
the time at which it has to be executed, and to as-
sign it to a processing unit on which it has to be
executed. For each of the operations we assume
that it is speci�ed on which type of processing unit
it has to be executed, and we assume that these
processing units have already been designed. Dur-
ing scheduling, we can therefore take into account
the time shapes of the processing units, which de-
scribe when they expect input data and when they
produce output data.
The goal during scheduling is to minimize the

total area that is required by the design. Because
of the application domain, not only processing
units but also memories have a signi�cant con-
tribution to the total area. So both contributions
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1. // RECURSIVE IDCT ALONG THE ROWS OF "input"

2. // each IDCT block perceives the same input data.

3. (v : 0 .. 7) 8 :: // 8 times with period of 8

4. begin

5. // initialization

6. sum[v][-1] = clear();

7. sum[v][0] = input[0];

8. // regular 
ow

9. (w : 1 .. 7) 1 ::

10. begin

11. sum[v][w],result[v][w] = idct pu(input[w],sum[v][w-1],sum[v][w-2]);

12. end;

13. // the last output can now be extracted.

14. sum[v][8],result[v][8] = idct pu( ,sum[v][7],sum[v][6]);

15. output[v] = result[v][8];

16. end;

Fig. 9. The PIF description of the IDCT

have to be taken into account, and a trade-o� has
to be made. A special issue to take care of during
scheduling is that operations are multidimensional
periodically executed [25], which places extra de-
mands on constraint checking and cost evaluation.

A schedule determines the clock cycles in which
the processing units produce output data and
when they require new input data, i.e., a schedule
determines the required delays of the intermediate
data. The data, also called variables, are stored in
and retrieved from memories. The problem now is
to design a con�guration of memories and an in-
terconnection network, and to assign the variables
to the memories, such that there are no con
icting
situations and that the required area is minimal.
Con
icts occur when, for instance, two variables
have to be stored simultaneously in a memory that
has only one input port. In that case the con
ict
has to be resolved, e.g., by assigning the variables
to di�erent memories, or by adding hardware for
delaying one of the write actions. During memory
synthesis, various types of memories can be taken
into consideration, e.g., dual-port and single-port
memories.

Memory synthesis results in data schedules,
which de�ne for each memory the time when data
is written into it, and when it is read out again.
Next, we have to determine the addresses at which

variables are stored, and address generators have

to be synthesized to provide these addresses at

the correct times. The main problem here is

to determine which variables are to be stored at

the same memory address, in order to reduce the

memory size.

Finally, a controller has to be synthesized that

provides the correct control signals. For instance,

the processing units have to be started at the

times determined by scheduling, read-enable and

write-enable signals have to be generated for the

memories, the control signals for the address gen-

erators have to be generated, and multiplexers

have to be controlled in order to route the data

to the correct places.

Figure 10 gives an overview of PHIDEO. As

shown, the four subsequent steps in PHIDEO are

performed by the tools Jason, Medea, Match-

box, and Paris, respectively. Figure 11 shows

PHIDEO's target architecture.

7. ASIP

The ASIP (Application-Speci�c Instruction-set

Processor) has various tasks, among which are

header generation, coding control and selection

of candidate motion vectors. All tasks that are
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Fig. 10. An overview of the steps in PHIDEO

subject to change in future products for di�erent
applications are implemented by the ASIP.

Not only signal data, but also header data is
present in an MPEG bitstream [1]. The ASIP gen-
erates all headers. For instance, the frame type
(I/P) and image dimensions are sent to the de-
coder through the headers. Also de-quantization
information, motion vectors etc. have to be sup-
plied by headers.

The global and local decisions in the coding
strategy, such as the coding pro�le, and the coding
accuracy (quantizer level), are performed by the
algorithm running on the ASIP. The bu�er/bit-

interconnections

interconnections

address
generators

Memories

PU PU

controller

Fig. 11. The target architecture of PHIDEO

rate control part of this algorithm calculates
and/or predicts the number of bits allowed for the
remaining data and controls the coding accuracy
by instructing the Compressor. Both variable bit-
rate and �xed bit-rate are possible. Also a task
of the ASIP is the generation of motion vector-
candidates on basis of the 3DRS block-matcher.

The ASIP is generated by the high-level syn-
thesis Mistral2Pro part of the DSP Station

tm tool.
The design of the ASIP started with the de�ni-
tion of a datapath by its instruction set. This is
performed by crafting a representable model al-
gorithm in DFL (Data-Flow Language), schedul-
ing the operations, and generating instruction
set and microcode. This sequence of tasks was
repeated for di�erent instruction sets until the
model algorithm could be executed in a satis�able
number of clock cycles. Then the datapath and in-
struction set was �xed and the layout of the ASIP
was designed. The result of the model algorithm
are an instruction word of 162 bits and a datapath
of 24 bits wide. Also, it contains the following ex-
ecution units: an ALU, an address-computation
unit, a multiplier/divider, 3 input channels, 6 out-
put channels and 3 RAMs. The datapath contains
20 register �les, which are located at inputs of
execution units and addressed by the microcode.
The microcode RAM can contain 2048 words and
is downloadable via I2C.
Afterwards, other algorithms can be developed

using the now �xed datapath as a constraint. The
resulting microcode can then be downloaded (by
I2C) in the on-chip microcode RAMs. It is of
great importance that the model algorithm de-
scribed earlier is a proper predictor of the future
algorithms that will be downloaded in I.McIC. This
model e�ectively sizes and freezes the datapath
and the microcode memory. A positive prop-
erty of this \reprogrammable" ASIP is that once
the datapath generated by the model algorithm
is future-proof and �xed, the development of fur-
ther algorithms can be delayed until the IC itself
is present. Now, real-time environments can be
used for �ne-tuning [26, 27].

8. Design Flow

High-level synthesis tools were used in the design,
particularly PHIDEO for the Compressor and DSP
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Station
tm for the ASIP (see Figure 12). The res-

ult of the high-level synthesis is an RTL descrip-
tion that, together with manually written RTL de-
scriptions of other blocks, is mapped to standard
cells by logic synthesis. The standard cell net-
work is optimized for timing and area by retiming
[28, 29].

For large designs simulations are often bother-
some and restrictive because of simulator memory
limits and/or simulator slowness. Of great im-
portance for a well-de�ned behaviour is therefore
attention to simulation and veri�cation during the
design. As part of the design-input is available in
a high-level (synthesis) language the functional-
ity can be simulated from this input. This in-
put is translated in sequential VHDL, which can
be simulated, if desired, in combination with the
RTL-VHDL input part. Input to the simulation
are real image sequences, output are MPEG2 bit-
streams that can be fed into a software or hard-
ware decoder. Note that these simulations are
sequentially-run programs, and it is therefore easy
to detect and correct functional errors in the input
format. The simulation speed is also on par with
implementations from C or Pascal.

After high-level and netlist synthesis, the net-
lists are again veri�ed to the previously used se-
quential implementations of the considered func-
tional block. Now, because of the implementa-
tion, a full sequence simulation will almost be out
of scope due to slowness. However, veri�cation

Scan-chain insertion

PIF DFLVHDL

PHIDEO MISTRAL2PRO

RTL VHDL

Logic Synthesis

Retiming

Placement & Routing

Layout Fab I.McIC

microcode

COMPRESSOR ASIPOTHERS

Fig. 12. Design 
ow of I.McIC

of some strategically chosen test stimuli will cover
most errors, as the functionality was proven dur-
ing the sequential simulations. Note that only in-
consistencies in the synthesis tools have to be de-
tected. Most other tools were formally veri�ed by
analysing and pairing combinatorial expressions.

9. Results and Conclusions

In this paper we have described the design
of I.McIC, a single-chip MPEG2 video encoder.
I.McIC is applicable in particular for storage ap-
plications where higher bit-rates can be tolerated
(5{15 Mb/s) as opposed to the bit-rates used for
transmission (1.5{8 Mb/s). I.McIC operates in
MPEG's ML@SP mode, which can be decoded by
all MPEG2 decoders.
A printed circuit set-up which provides a full

codec functionality incorporating I.McIC is shown
in Figure 13. It can be seen that I.McIC time-
shares 16 Mbit of DRAM with an MPEG2 video
decoder, which is organized as 4 times 4 Mbit
devices with 60 ns. access time. I.McIC can handle
both 50 (PAL) and 60 (NTSC) Hz data formats, in
CCIR 601 and SIF resolution. In order to interface
smoothly to a CVBS video source, I.McIC uses a
line-locked clock generated by an Analogue to Di-
gital Converter (ADC) and running at 27 MHz.
A micro-controller provides the I2C input. I.McIC

outputs the video Elementary Stream (ES) which
is augmented with an audio bitstream to arrive at
a Transport Stream (TS). For some circuit char-
acteristics, see Table I.

ADC I.McIC

µ C

multiplexer

audio
encoding

16 Mbit
DRAM

MPEG2
decoder

ES TS

I2C

Fig. 13. PCB set-up for an MPEG2 codec functionality

using I.McIC
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Table 1. I.McIC Characteristics (see also Figure 14)

number of transistors 4:5� 106

area 198mm
2 in 0:5�

power consumption 2:1 Watts

clock frequency 27 MHz

package QFP240

supply voltage 3.3 V (5 V for io)

number of embedded memories 42 (for 509Kbit)
total memory bandwidth 42 Gbit/s

Note that I.McIC is highly integrated, since
it also contains on one chip motion estimation
and compensation, MPEG2 header generation
and bu�er/bit-rate control (both �xed and vari-
able). The functionality is implemented as ded-
icated hardware blocks and as embedded soft-
ware running on an integrated application-speci�c
instruction-set processor. This is a prime example
of Hardware-Software Co-Design. Because of the
high integration of functionality, I.McIC enables
the introduction of MPEG2 encoding in the con-
sumer market, particularly for storage applica-
tions.
The design of this IC with a limited number

of people was made possible by the extensive use
of high-level synthesis tools. The synthesis from a
high-level description also enabled sequential veri-
�cation of the design input on real video signals.

IDCT

control,
RLEVLE ASIP

Frontend
Backend

Memory Interface

ME

DCT

microcode RAM

microcode RAM

NF

Q, IQ

Fig. 14. Micrograph of I.McIC

Due to the 
exibility o�ered by the ASIP, I.McIC

itself is being used on a PCB as a real-time test
environment for coding strategies in di�erent ap-
plications.
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